Viability of two adaptive fuzzy systems based on fuzzy c means and subtractive clustering methods for modeling Cadmium in groundwater resources
نویسندگان
چکیده
The Adaptive Neuro-Fuzzy Inference System (ANFIS) combines the strengths of both Artificial Neural Networks (ANNs) and Fuzzy Logic (FL) into a single framework. By doing so, it allows for quicker learning adaptable interpretation capabilities, which are useful modeling complex patterns identifying nonlinear relationships. One significant challenge in assessing water quality is difficulty time-consuming nature determining various factors that impact it. Given this situation, predicting heavy metal levels groundwater resources, urban rural, essential. This paper investigates two methods, ANFIS-FCM ANFIS-SUB, to determine their effectiveness Cadmium (Cd) resources. The parameters be considered are: dissolved solids (TDS), electroconductivity (EC), turbidity (TU), pH were assumed independent variables. A total 51 sampling location used with resource develop fuzzy models. For evaluating performance ANFIS-SUB models, three different criteria including correlation coefficient, root mean square error, sum error comparing model outputs actual outputs. Based on obtained results from scatter plots predicted value by ANFIS- FCM determination coefficient (R2) data, test train sets equal 0.978, 0.982, 0.993 0.983, 0.999 0.998 respectively. result proved Cd predictions implemented was significantly close measured all experimental data R2 0.983. compared found provided slightly higher accuracy than model. Also, comparison between indicated have strong potential estimating metals high degree accuracy.
منابع مشابه
Subtractive Fuzzy C-means Clustering Approach
To identify T-S models, this paper presents a so-called “subtractive fuzzy C-means clustering” approach, in which the results of subtractive clustering are applied to initialize clustering centers and the number of rules in order to perform adaptive clustering. This method not only regulates the division of fuzzy inference system input and output space and determines the relative member functio...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملdesigning unmanned aerial vehicle based on neuro-fuzzy systems
در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Heliyon
سال: 2023
ISSN: ['2405-8440']
DOI: https://doi.org/10.1016/j.heliyon.2023.e18415